EI Bhilat, H.; Hachim, A.; Salmi, H.; Mabchour, H.; EI Had, K. Characterization and processability of post-consumer, doublerecycled high impact polystyrene from disposable cups. Mater. Today Proc. 2021, 45, 7264–7270. Available from:http://dx.doi.org/10.1016/j.matpr.2020.12.935
Liu, G.; Wang, J.; Wang, M.; Ying, R.; Li, X.; Hu, Z.; Zhang, Y. Disposable plastic materials release microplastics and harmful substances in hot water. Sci Total Environ. 2021, 151685. [PubMed]. Available from:https://doi.org/10.1016/j.scitotenv.2021.151685
Dintcheva, N.T.; Infurna, G.; D’Anna, F. End-of-life and waste management of disposable beverage cups. Sci. Total Environ. 2021, 763, 143044. Available from:https://doi.org/10.1016/j.scitotenv.2020.143044
Keller, A.; Köhler, J.K.; Eisen, C.; Kleihauer, S.; Hanss, D. Why consumers shift from single-use to reusable drink cups: An empirical application of the stage model of self-regulated behavioural change. Sustain. Prod. Consump. 2021, 27, 1672–1687. Available from:https://doi.org/10.1016/j.spc.2021.04.001
Van der Harst, E.; Potting, J. A critical comparison of ten disposable cup LCAs. Environ. Impact Assess. Rev. 2013, 43, 86–96. Available from:https://doi.org/10.1016/j.eiar.2013.06.006
Foteinis, S. How small daily choices play a huge role in climate change: The disposable paper cup environmental bane. J. Clean. Prod. 2020, 255, 120294. Available from:https://doi.org/10.1016/j.jclepro.2020.120294
Bilek, M.A.; Salem, H.J.; Korehei, R.; Olson, J.A. Recycling Paper-Plastic laminate coffee cups using a Single-Disk Refiner: Energy requirements and recovered fiber quality. Waste Manag. 2021, 136, 104–112. Available from:https://doi.org/10.1016/j.wasman.2021.10.008
Karthika, A.; Seenivasagan, R.; Kasimani, R.; Babalola, O.O.; Vasanthy, M. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. Waste Manag. 2020, 116, 58–65. Available from:https://doi.org/10.1016/j.wasman.2020.06.036
Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and other harmful substances released from disposable paper cups into hot water. J. Hazard. Mater. 2021, 404, 124118. Available from:https://doi.org/10.1016/j.jhazmat.2020.124118
Ma, Y. Problems and resolutions in dealing with waste disposable paper cups. Sci. Prog. 2018, 101, 1–7. Available from:http://dx.doi.org/10.3184/003685017X15129981721365
Arumugam, K.; Renganathan, S.; Babalola, O.O.; Muthunarayanan, V. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Manag. 2018, 74, 185–193. [PubMed]. Available from:https://doi.org/10.1016/j.wasman.2017.11.009
Notaro, S.; Lovera, E.; Paletto, A. Consumers’ preferences for bioplastic products: A discrete choice experiment with a focus on purchase drivers. J. Clean. Prod. 2022, 330, 129870. Available from:https://doi.org/10.1016/j.jclepro.2021.129870
Loschelder, D.D.; Siepelmeyer, H.; Fischer, D.; Rubel, J.A. Dynamic norms drive sustainable consumption: Norm-based nudging helps café customers to avoid disposable to-go-cups. J. Econ. Psychol. 2019, 75, 102146. Available from:https://doi.org/10.1016/j.joep.2019.02.002
Novoradovskaya, E.; Mullan, B.; Hasking, P.; Uren, H.V. My cup of tea: Behaviour change intervention to promote use of reusable hot drink cups. J. Clean. Prod. 2021, 284, 124675. Available from:https://doi.org/10.1016/j.jclepro.2020.124675
Gill, M.B.; Jensen, K.L.; Lambert, D.M.; Upendram, S.; English, B.C.; Labbé, N.; Jackson, S.W.; Menard, R.J. Consumer preferences for eco-friendly attributes in disposable dinnerware. Resour. Conserv. Recycl. 2020, 161, 104965. Available from:https://doi.org/10.1016/j.resconrec.2020.104965
Sandhu, S.; Lodhia, S.; Potts, A.; Crocker, R. Environment friendly takeaway coffee cup use: Individual and institutional enablers and barriers. J. Clean. Prod. 2021, 291, 125271. Available from:https://doi.org/10.1016/j.jclepro.2020.125271
Ramanathan, S.; Sasikumar, M.; Prince Makarios Paul, S.; Obadiah, A.; Angamuthu, A.; Santhoshkumar, P.; Durairaj, A.; Vasanthkumar, S. Low cost electrochemical composite material of paper cup waste carbon (P-carbon) and Fluorescein for supercapacitor application. Mater. Today Proc. 2021, 47, 825–836. Available from:https://doi.org/10.1016/j.matpr.2020.12.561
Nagarajan, K.J.; Balaji, A.N.; Kasi Rajan, S.T.; Ramanujam, N.R. Preparation of bio-eco based cellulose nanomaterials from used disposal paper cups through citric acid hydrolysis. Carbohydr. Polym. 2020, 235, 115997. Available from:https://doi.org/10.1016/j.carbpol.2020.115997
Chen, J.; Li, H.; Fang, C.; Cheng, Y.; Tan, T.; Han, H. Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups. Carbohydr. Polym. 2020, 237, 116040. Available from:https://doi.org/10.1016/j.carbpol.2020.116040
Biswal, B.; Kumar, S.; Singh, R.K. Production of Hydrocarbon Liquid by Thermal Pyrolysis of Paper Cup Waste. Waste Manag. 2013, 2013, 731858. Available from:http://dx.doi.org/10.1155/2013/731858
Mitchell, J.; Vandeperre, L.; Dvorak, R.; Kosior, E.; Tarverdi, K.; Cheeseman, C. Recycling disposable cups into paper plastic composites. Waste Manag. 2014, 34, 2113–2119. [PubMed]. Available from:https://doi.org/10.1016/j.wasman.2014.05.020
Ikram, R.; Jan, B.M.; Ahmad, W. Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. J. Mater. Res. Technol. 2020, 9, 15924–15951. Available from:https://doi.org/10.1016/j.jmrt.2020.11.043
Xia, Q.; Chen, C.; Yao, Y.; Li, J.; He, S.; Zhou, Y.; Li, T.; Pan, X.; Yao, Y.; Hu, L. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 2021, 4, 627–635. Available from:https://doi.org/10.1038/s41893-021-00702-w
Jiang, B.; Chen, C.; Liang, Z.; He, S.; Kuang, Y.; Song, J.; Mi, R.; Chen, G.; Jiao, M.; Hu, L. Lignin as a Wood-Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. Adv. Funct. Mater. 2019, 30, 1906307. Available from:http://dx.doi.org/10.1002/adfm.201906307
Zhang, J.; Luo, N.; Wan, J.; Xia, G.; Yu, J.; He, J.; Zhang, J. Directly Converting Agricultural Straw into All-Biomass Nanocomposite Films Reinforced with Additional in Situ-Retained Cellulose Nanocrystals. Acs. Sustain. Chem. Eng. 2017, 5, 5127–5133. Available from:http://dx.doi.org/10.1021/acssuschemeng.7b00488
Liu, Y.; Ahmed, S.; Sameen, D.E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A review of cellulose and its derivatives in biopolymerbased for food packaging application. Trends Food Sci. Tech. 2021, 112, 532–546. Available from:https://doi.org/10.1016/j.tifs.2021.04.016
Xia, G.; Zhou, Q.; Xu, Z.; Zhang, J.; Zhang, J.; Wang, J.; You, J.; Wang, Y.; Nawaz, H. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Carbohydr.Polym. 2021, 273, 118569. Available from:https://doi.org/10.1016/j.carbpol.2021.118569
Huang, K.; Wang, Y. Recent applications of regenerated cellulose films and hydrogels in food packaging. Curr. Opin. Food Sci.2022, 43, 7–17. Available from:https://doi.org/10.1016/j.cofs.2021.09.003
Nawaz, H.; Zhang, X.; Chen, S.; You, T.; Xu, F. Recent studies on cellulose-based fluorescent smart materials and their applications: A comprehensive review. Carbohydr. Polym. 2021, 267, 118135. Available from:https://doi.org/10.1016/j.carbpol.2021.118135
Li, Y.; Chen, Y.; Huang, X.; Jiang, S.; Wang, G. Anisotropy-functionalized cellulose-based phase change materials with reinforcedsolar-thermal energy conversion and storage capacity. Chem. Eng. J. 2021, 415, 129086. Available from:https://doi.org/10.1016/j.cej.2021.129086
Shen, Z.; Oh, K.; Kwon, S.; Toivakka, M.; Lee, H.L. Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in alt hydrate phase change material for efficient thermal energy storage. Int. J. Biol. Macromol. 2021, 174, 402–412. [PubMed]. Available from:http://dx.doi.org/10.1016/j.ijbiomac.2021.01.183
Xia, G.; Wan, J.; Zhang, J.; Zhang, X.; Xu, L.; Wu, J.; He, J.; Zhang, J. Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydr. Polym. 2016, 151, 223–229. [PubMed]. Available from:https://doi.org/10.1016/j.carbpol.2016.05.080
Wong, L.C.; Leh, C.P.; Goh, C.F. Designing cellulose hydrogels from non-woody biomass. Carbohydr. Polym. 2021, 264, 118036. [PubMed]. Available from:https://doi.org/10.1016/j.carbpol.2021.118036
Cavalcanti, D.K.K.; Banea, M.D.; Neto, J.S.S.; Lima, R.A.A. Comparative analysis of the mechanical and thermal properties of polyester and epoxy natural fibre-reinforced hybrid composites. J. Compos. Mater. 2020, 55, 1683–1692. Available from:http://dx.doi.org/10.1177/0021998320976811
A. Singh and M. Mayur, “Development & characterization of PVA/starch nanocomposite film using nanocellulose,” J. Name of Journal, vol. 5, pp. 34–47, 2024. Available from:https://shorturl.at/5PKZJ